
Chapter 6

A Generic Transcoding Tool for Making Web
Applications Adaptive

“This here’s a re-search laboratory. Re-search means look again, don’t it? Means
they’re looking for something they found once and it got away somehow, and now they
got to re-search for it?”1

6.1 Motivation and Introduction

In the preceding chapters of this thesis a component-based document format for adaptive
dynamic Web documents was introduced. In combination with a structured authoring pro-
cess and supported by a graphical authoring tool, it facilitates the efficient development of
personalized ubiquitous Web presentations from reusable implementation artefacts. It was
illustrated how different application aspects (concerning content, navigation, presentation,
and their appropriate adaptation issues) can be systematically considered by guiding com-
ponent developers through the phases of the overall Web engineering process. However, the
resulting authoring framework assumes to create adaptive Web applications “from scratch”,
not providing sufficient support for developers (providers) who intend to add adaptation to
an already existing Web-based system.

On the other hand, there already exists a number of formats, methodologies, and frame-
works for Web application engineering. A detailed overview of the most important approaches
was provided in Chapter 3. As discussed there, only some of them support (selected) issues
of personalization and device dependency. Therefore, this chapter deals with the question
how the lessons learned from engineering component-based adaptive Web presentations can
be applied (i.e. generalized) for extending a broader range of existing Web applications by
additional adaptation concerns.

In order to answer this question, it is important to investigate the way how existing Web
Information Systems are typically implemented. As can be observed, they are generally based
on a series of data transformations that convert some input content (in general XML data)
to a hypermedia presentation in a particular implementation format, such as (X)HTML,
cHTML, WML, X3D, etc. These data transformations are controlled by a specification
(mostly in form of a specific XML-based document format) that dictates the application’s
semantic, navigational, and presentational behavior [Fiala and Houben 2005]. Such a typical
pipeline-based (staged) Web presentation generation architecture is illustrated in Figure 6.1.
The original content is subject to a number of transformations that subsequently lead to the
desired hypermedia presentation.

Note that Web Information Systems supporting adaptation are realized in a similar way.
1Kurt Vonnegut, Jr.: Cat’s Cradle, 1963

137

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

content transformer
Web

pres.transformer transformer

Figure 6.1: WIS implementation based on data transformations

The only difference to non-adaptive WISs is that they utilize adaptation-specific content
transformation steps that are additionally parameterized by available external information
describing the user’s actual usage context. Usually, this information is referred to as a user
model or a context model . It is typically used (referenced) by adaptation conditions that
are attached to (i.e. contained by) fragments of the input content. A content transformation
pipeline containing such an adaptation-specific transformation step is illustrated in Figure 6.2.
Note, however, that there are also scenarios where several transformation steps utilize context
information.

content +

adapt. logic
transformer

Web

pres.transformer
context-based

transformer

context

Figure 6.2: WIS implementation with adaptation

In general, most content transformations in a WIS implementation are very specific to the
formats or models dictated by the underlying methodology or framework. Nevertheless, it
can be recognized that adaptation-specific transformations have a lot in common. As iden-
tified by Brusilovsky’s surveys [Brusilovsky 2001], they typically perform similar operations
on (groups of) structured content fragments (e.g. document components, data units, slices,
document nodes). Well-known adaptation operations on such structured content fragments
are conditional inclusion, selection, removal, insertion, sorting, etc. (see Section 2.2.3). As
also demonstrated by the component-based document format introduced in Chapter 4, such
basic adaptation operations (transformations) can be used to realize a variety of adaptation
concerns.

Given the similarity and the generic nature of such “adaptation-specific content transfor-
mations”, the key observation can be made that major parts of them can be well separated
from the rest of a Web application’s hypermedia generation pipeline. What is more, this
separate implementation of selected adaptation transformations (operations) also allows for
“extracting” their configuration from the document formats describing the underlying Web
application. As a consequence, it becomes possible to realize given adaptations based on
generic transformer modules that can be appropriately controlled by an external configura-
tion. Moreover, when both the implementation and appropriate configuration of adaptation
operations can be separated from the original application, then it also becomes possible to
add adaptation to an existing Web-based system.

A transformation scenario utilizing such a generic transformer module is depicted in Fig-
ure 6.3. Note that besides the information describing the current usage context, this trans-

138 c© Copyright TU Dresden, Zoltán Fiala

6.1. Motivation and Introduction

former additionally takes an external adaptation recipe (i.e. configuration) into account, that
dictates which adaptation operations it has to perform on (which selected parts of) its in-
put content. That is to say, the specification of adaptations is not an inherent part of the
input content anymore. Quite the opposite, it is “outsourced” to the generic transformer’s
configuration and addresses the content fragments (e.g. document components, data units,
sections, etc.) to be adapted externally. Thus, the concept of document components (frag-
ments) containing inherent adaptation descriptions can be generalized for a broader range of
Web applications by the external assignment of adaptation descriptions to parts (fragments)
of an arbitrary XML-based document format.

content transformer
Web

pres.transformer
generic

adaptation

module

context
adapt.

recipe

Figure 6.3: WIS implementation based on generic adaptation modules

To demonstrate this idea, this chapter introduces the Generic Adaptation Component
(GAC [Fiala and Houben 2005]), a generic transcoding tool aiming at making existing Web
applications adaptable and adaptive2. The provider of a Web Information System can use
it as a stand-alone module, configure it, and integrate it into his Web site architecture. For
the configuration of the GAC an RDF-based rule language is introduced, allowing to specify
rules for both content adaptation and context data updates. Furthermore, a set of operations
for implementing these rules will be provided.

Note that the separation of adaptation from the rest of the application might obviously
result in a restricted adaptation support compared to adaptive Web applications that have
been designed for adaptation from the beginning. However, it will be demonstrated that
even this transformation-based “lightweight” adaptation extension can be efficiently utilized
in many different application scenarios.

The rest of this chapter is structured as follows. After briefly discussing related approaches
in Section 6.2, an overview of the architecture, the main functionality, and the most important
application scenarios of the GAC is given (Section 6.3). Then, Section 6.4 describes central
issues of the GAC’s configuration in more detail, among them the requirements towards
its input data, the adaptation context data it utilizes, and its RDF-based configuration
language. To help the reader understand the main concepts, all these aspects are explained
by a running example. The implementation details of the GAC based on the component-based
document format’s presentation generation architecture are introduced in Section 6.5. Finally,
Section 6.6 gives a comparison of the transcoding-based adaptation approach described in this
chapter and the component-based approach explained in the previous chapters, by discussing
their main advantages and disadvantages.

2The GAC was designed and developed within the scope of a long-term collaboration between the author’s
research group (the AMACONT project [@AMACONT]) and the Hera research program [@HERA]. Note,
however, that the GAC’s basic concepts, its rule-based configuration language, and its implementation are a
contribution of the author.

c© Copyright TU Dresden, Zoltán Fiala 139

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

6.2 Existing Web Transcoding Solutions

Recently, a number of transcoding solutions for adapting Web applications have emerged.
Most of them aim at adjusting HTML-based Web content to limited presentation capabilities,
like those of small hand-held devices [Alam and Rahman 2003].

Many approaches utilize so-called transcoding heuristics [Bickmore et al. 1999] for the
fully automatic re-authoring of Web pages. The most important characteristics of such
heuristics is that they do not take into account the structure or semantics of a partic-
ular Web page, thus they provide transcoding operations that are applicable to (almost)
arbitrary Web pages. The most widely used heuristics are first sentence elision, image re-
duction [Bickmore et al. 1999], video/audio transcoding [Smith et al. 1998], and outlining
(i.e. the replacement of section headers with hyperlinks pointing to the corresponding text
blocks [Hwang et al. 2002]). Furthermore, there are also approaches aimed at removing ad-
vertisements, link lists, or empty tables [Gupta et al. 2003], as well as automatically abbrevi-
ating common words [Gomes et al. 2001]. While being generally applicable, these approaches
do not take into account the specific structure and the domain-specific semantics of the un-
derlying Web content sufficiently. Furthermore, as a consequence of their heuristic nature,
the result of the adaptation (and especially the quality or usability of the resulting Web
pages) is often unpredictable [Hwang et al. 2003].

Barrett et al. [Barrett and Maglio 1999] define intermediaries as computational entities
that operate on information as it flows along a stream, and introduce the Web Intermedi-
aries (WBI) [Barrett et al. 1997] approach, a framework for manipulating Web information
streams. Data manipulation functionality is implemented by autonomous agents that can
be deployed on the server, the client, or as proxies. The approach supports four kinds
of agents: monitors, editors, generators, and autonomous agents. Utilizing WBI, Hori et
al. [Hori et al. 2000] present an annotation-based transcoding solution for accessing HTML
documents from information appliances like PDAs, cell phones, and set-top boxes. RDF-
based external annotations specifying content transformation rules such as content alter-
native selection or page splitting hints can be assigned to fragments of particular Web
pages [Hori et al. 2002]. The main benefit of this approach is that both the structure and
content of the input data can be taken into account. Furthermore, as the adaptation meta-
data is separated from the content itself, different application-specific adjustment scenarios
are possible. However, even this approach is restricted to the transcoding of HTML content
mainly based on device capabilities. There is no support for dynamic adaptation, nor for
maintaining a broader range of contexts (e.g. personalized user profiles).

A similar solution based on the assignment of external transformation instructions to Web
documents is provided by RDL/TT (Rule Description Language for Tree Transformations
[Schaefer et al. 2002, Osterdiekhoff 2004]). Still, instead of declarative annotations, a Java-
based imperative transcoding language is utilized. Again, this language focuses also primarily
on the specifics of HTML-based Web documents.

Besides for device adaptation, transcoding techniques are also intensively used to make
Web applications accessible for visually impaired users [Asakawa and Takagi 2000]. Again,
some solutions are based on external annotations. As an example, we mention the Travel
Ontology [Yesilada et al. 2004], allowing to (semi-)automatically transform Web pages to
a form optimized for voice output. Aurora [Huang and Sundaresan 2000] pursues a more
semantic approach and uses domain-specific schemas describing the functional semantics of
Web objects to extract their content and automatically adapt it to different user requests.

Looking at related work on Web transcoding, one can see that existing approaches mainly

140 c© Copyright TU Dresden, Zoltán Fiala

6.3. GAC: Generic Adaptation Component

allow static adaptation (adaptability), i.e. the adjustment of Web pages to a static set of
user or device parameters. Moreover, most solutions are restricted to the presentation layer
of Web applications, aiming at transforming HTML pages to limited device capabilities or
users’ visual impairments. Still, we claim that transcoding could be used for a broader range
of adaptation and personalization issues, especially for adaptivity, i.e. adaptation according
to parameters that may change while the Web presentation is being accessed or browsed.

6.3 GAC: Generic Adaptation Component

6.3.1 GAC Overview

As mentioned above, the GAC is a generic transcoding tool aimed at adding adaptation to
existing Web applications. Figure 6.4 shows how it is integrated into a typical hypermedia
generation process: it processes XML-based Web content provided by some Web application
generator and adjusts it to the preferences and properties of individual users and their clients.
As a generic component, the GAC can perform different adaptations on its input, the recipe
for which is specified by its configuration. This configuration consists of a set of adaptation
rules, each dictating a different content adaptation aspect. To take (besides the input)
the current usage context into account, adaptation rules can reference arbitrary parameters
from the adaptation context data. Finally, in order to support adaptivity, the configuration
also contains update rules allowing to manipulate this context data according to the user’s
navigation and interaction history.

Web

pages

Web

application

generator
data

generic

adaptation

component

adapted

Web

pages

config
adaptation

context

data

XML-

based

Figure 6.4: GAC abstract system overview

6.3.2 Possible Application Scenarios

As a generically applicable transcoding tool, the GAC does not make any assumptions (re-
strictions) to the preceding Web content generation process3. Quite the opposite, it can
support a variety of application scenarios depending on how its XML-based input is created
or generated. The following examples summarize a number of important GAC application
areas.

3As will be described in more detail in Section 6.4.1, the only assumption is that the the original content
generation process delivers data in XML format.

c© Copyright TU Dresden, Zoltán Fiala 141

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Transcoding static Web pages

Figure 6.5 shows a basic transcoding scenario where the “Web application generation process”
acts as a traditional Web server delivering static XHTML pages. As an example, the GAC
could adapt those pages to limited devices by filtering out large images, omitting videos, or
eliding tags not interpretable on them. Furthermore, it could also perform user specific per-
sonalization tasks, such as changing font colors or removing information being unimportant
for the user (e.g. decoration elements or links to forbidden sites).

static

XHTML

pages
GAC

adapted

Web

pages

context

data

context

data

Figure 6.5: GAC scenario 1. - Transcoding static XHTML

Adaptive WIS Front-end

A more complex scenario is shown in Figure 6.6. In this case the GAC is used as the adaptive
front-end of a more complex Web Information System. Based on its input data (which
is typically retrieved from a data source, e.g. a database), this WIS delivers dynamically
generated Web pages.

Web

pagesWISdata GAC

adapted

Web
pages

presentation

adaptation

device

independent

device

dependent

context

data

context

data

Figure 6.6: GAC scenario 2. - Adaptive WIS front-end

The WIS might be non-adaptive, or it might have already performed some content- or
navigation-specific adaptations. Consequently, the role of the GAC could be to perform
presentation-specific adaptation operations on those pages. This could include the adjustment
of content elements to the media types and tag structures supported by a specific device
or document format, the manipulation of the spatial adjustment of those content elements
on the generated pages, or even the consideration of the current user’s layout preferences
(background images, link colors, etc.). However, the fact that the GAC operates “only” on
the presentation level of the underlying Web application means that its adaptation capabilities
are limited, respectively.

142 c© Copyright TU Dresden, Zoltán Fiala

6.3. GAC: Generic Adaptation Component

Transcoding with multiple GACs

While the above examples utilize only one GAC, it is possible to employ several independent
GACs at different stages of the Web presentation generation process. As discussed in Sec-
tion 5.3.2, a Web Information System can be efficiently realized with three layers, namely
the semantic layer, the navigation layer, and the presentation layer, each responsible for its
specific adaptation processes. Thus, as an extension of the preceding scenario, a non-adaptive
WIS can be extended with a GAC each layer (see Figure 6.7). As a matter of course, each
GAC is required to deliver data corresponding to the requirements of its successor layer.

presentation

adaptation

navigation

adaptation

presentation

layer
semantic

layer

WISdata GAC WIS GAC

adapted

Web
pages

context

data

context

data
context

data

context

data

GAC WIS

context
data

context
data

semantic

adaptation

navigation

layer

Figure 6.7: GAC scenario 3. - Adaptive WIS based on GAC pipeline

Separation of Adaptation Aspects with Multiple GACs

The GAC is a generic component aimed at performing different kinds of adaptations on its
input data. Still, adaptation in a Web application is typically centered around a number of
well separable independent adaptation concerns (or adaptation aspects). For instance, the
navigational structure of a Web application might be adjusted according to a number of (pos-
sibly orthogonal) design concerns, such as device dependency, localization, personalization,
or security. While all of these adaptations can be reduced to context-based data transforma-
tions, the provider of a Web application might need to handle them independently, i.e. by
using a separate GAC for each of them.

GAC

adapted

Web

pages

context

data

GAC

context

data

context

data

security device independence

Web

pages

Figure 6.8: GAC scenario 4. - Separation of concerns with multiple GACs

Figure 6.8 illustrates such an adaptation scenario consisting of two GACs. While the first
one performs adaptation operations supporting security issues (e.g. by hiding trustworthy
content from users that are logged in as guests), the second one targets device independence
(e.g. by filtering out media items being not suitable for a certain client device). Note that
this separation of adaptation aspects allows providers to easily add (or remove) additional

c© Copyright TU Dresden, Zoltán Fiala 143

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

adaptation concerns to an application without the need to change (reconfigure) or rewrite it
completely. Furthermore, they can also easily reconfigure the priority of adaptation concerns
by exchanging the order according to which the utilized GACs are switched in line. For more
information on the advantages of this separation of concerns by using multiple GACs the
reader is referred to [Casteleyn et al. 2006a, Casteleyn et al. 2006b].

Adaptivity Support

As mentioned in Section 6.2, most transcoding-based solutions provide adaptability, i.e. the
adaptation based on a static user or device profile, not taking into account the user’s browsing
behavior. Still, modern AWISs with their increased interactivity require to support dynamic
adaptation (adaptivity). As examples we mention the elision of information the (returning)
user has already seen, the recommendation of links to pages the user might have become
interested in, but also the dynamic reorganization of the WIS’s presentation layer whenever
he resizes his browser window.

data GAC

adapted

Web

pages

context

data

re
a
d

w
rite

Figure 6.9: GAC scenario 5. - Support for adaptivity

To support adaptivity, the GAC has access to adaptation context data, and it can not
only read but also dynamically update that context data by means of so-called update rules
(see Figure 6.9). Consequently, the example scenarios mentioned above can be extended by
even more sophisticated adaptation mechanisms. As a possible extension of the first scenario,
the GAC can monitor the pages visited by users, maintain the knowledge they obtain when
reading those pages, and use this knowledge to dynamically order links to related pages.

6.3.3 Running Example Overview

In order to help the reader understand the main concepts, the architecture, and the con-
figuration of the GAC, the rest of this chapter will explain these details based on a small
example application. This selected example is a dynamic Web Information System provid-
ing information about a research collaboration between the author’s research group (the
AMACONT project [@AMACONT]) and the Hera research program of the Vrije Univer-
siteit Brussels [@HERA]. There are members working at the project, each characterized by
a name, a CV, a picture, as well as some contact data (email address, phone number etc).
They produce publications on their research efforts, which are described by a title, the name
of the corresponding conference or journal, the year of publication, and an abstract.

The example Web application consists of dynamically generated Web pages in the XHTML
format (see Figure 6.10). The starting page of the example application is the project home-
page. It provides basic information on the project (title, description, budget information) as
well as a dynamically generated link list consisting of its members’ pictures as thumbnails.

144 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

By clicking on a thumbnail the user can navigate to the corresponding member’s page that
contains his name, contacts, CV, image, and a list of his publications. This list again leads
to another page describing the corresponding publication in more detail.

Figure 6.10: GAC running example overview

As this Web presentation does not take into account the user‘s preferences, nor the client‘s
capabilities, the GAC will be used to add personalization and adaptation to it. The config-
uration and realization of the supported adaptations will be shown in the following.

6.4 GAC Configuration

As shown in Figure 6.4, the most crucial issues for understanding the overall architecture and
functionality of the GAC are 1) the requirements towards the input content to be adapted,
2) the structure of the adaptation context data, and 3) the RDF-based rule language used to
configure the corresponding adaptation operations. In accordance with the running example
described above, this section explaines these issues in more detail.

6.4.1 Input Data Requirements

The GAC gets its input data from a Web presentation generation process, which can be e.g.
a (part of a) legacy Web application. According to its configuration and the information
describing the current usage context, it performs transformations on that input. Thus, the

c© Copyright TU Dresden, Zoltán Fiala 145

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

transformations need access to the input content, i.e. a definition (of an interface) is required
that states the structural elements to be encountered in it.

For the sake of generality, arbitrary XML-based Web content is allowed as input for the
GAC. This enables the GAC to process a wide spectrum of content, both Web pages delivered
in a standardized format ((X)HTML, cHTML or WML), as well as richly annotated XML
data that abstracts from a specific output format and provides more information about the
structure and semantics of its content. In general, the better structured and annotated the
input data is, the more sophisticated adaptations can be specified.

As discussed above, the example application (to be adapted) used throughout this chapter
delivers Web pages in XHTML. Furthermore, it is assumed that its designer put a focus on the
separation of content and layout, and structured the generated presentation appropriately.
Listing 6.1 shows the structure of a Web page presenting information about a project member.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ... >
2 <html>
3 ...
4 <body>
5 <div class="member" id="member_ID1">
6
7
8 <div class="membername" id="membername_ID1">
9 <h1>Dipl-Inform. Zoltán Fiala</h1>

10 </div>
11 ...
12
13 <div class="membercv" id="membercv_ID1">
14 <p>Zoltán is a PhD student at Dresden University of Technology ...</p>
15 </div>
16 ...
17
18 <div class="publications" id="publications_ID1">
19
20 </div>
21
22 </div>
23 ...
24 </body>
25 </html>

Listing 6.1: GAC input content example

As can be seen, the meaningful content elements (e.g. the member’s name, CV, publi-
cations, etc.) to be presented are appropriately encapsulated by div elements and are also
identified by a class attribute and a unique id attribute. As will be shown later, the presence
of such content structuring tags facilitates to apply a number of content-specific adaptations.
Note, however, that the usage of this structure in our example does not restrict the GAC’s
generality. First, it will be shown that GAC rules are independent of specific XML grammars.
Second, most hypermedia document formats and WIS approaches utilize similar hierarchi-
cally ordered data containers to structure their Web content. As important analogies we
mention WebML’s data units [Ceri et al. 2000], Hera’s slices [Frasincar et al. 2002], AHA!’s
page fragments [De Bra et al. 2002], CHAMELEON’s components [Wehner and Lorz 2001],
HMDoc’s document nodes [Westbomke and Dittrich 2002], or even the Section elements of
the upcoming W3C standard XHTML 2.0 [Axelsson et al. 2004].

146 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

6.4.2 Adaptation Context Data

The adaptation operations executed by the GAC are parameterized by the adaptation context
data. It contains up-to-date information on the user, his device, and entire usage context
which the GAC has read and write access to. The structure of the GAC’s adaptation context
data is based on CC/PP, an RDF grammar for describing device capabilities and user prefer-
ences. As mentioned in Section 4.5.2, it represents context information based on a two-level
hierarchy of components and their attributes, the latter of which are described as name-value
pairs.

The GAC’s configuration language (which will be described in more detail in Section 6.4.3)
refers to context data parameters as variables of the form $paramname, where paramname is
a literal consisting of alphanumeric characters. Moreover, it also allows for array-like context
parameters in the form $paramname[index], where the index of such an array is again
an arbitrary literal of alphanumeric characters4. The usage of such array-like structures is
important when handling context information which is somehow related to the underlying
data (e.g. the number of times the user was been presented a given content element) and will
be demonstrated in Section 6.4.3 by a number of examples.

As it will be shown later, the usage of CC/PP allows to “reuse” the context modeling
framework of the modular document generation architecture presented in Section 4.5 for the
GAC’s implementation. An excerpt from the CC/PP-based context model of that architec-
ture was already shown in Section 4.5.2. As mentioned there, it can be extended arbitrarily
by the introduction of new profiles.

6.4.3 The Rule-based GAC Configuration Language

The GAC is controlled by its RDF-based configuration. It consists of a set of rules that
specify the content units to be adjusted, the adaptations to be performed on them, and (in
the case of adaptivity) the way the adaptation context data has to be updated. Rules are
declarative, i.e. they describe what should be done, rather than how. This means, for example,
that different implementations are possible for a rule specification. This is a main benefit
compared to imperative approaches (e.g. RDL/TT [Schaefer et al. 2002]) that explicitly focus
on a concrete implementation.

A graphical excerpt of (a part of) the RDF schema defining the GAC rule hierarchy is
depicted in Figure 6.11. The top of this hierarchy is the abstract class Rule. A Rule is always
bound to a Condition, i.e. it is activated if and only if that condition holds. A Condition
is an arbitrary complex Boolean expression consisting of constants, parameters from the
adaptation context data, as well as logical and arithmetic operations. Rules can be either
adaptation rules or update rules. Whereas adaptation rules describe how the input data has
to be transcoded, update rules aim at manipulating the adaptation context data. Along the
lines of the example application, the following sections describe the corresponding rule types
and their configuration options in more detail.

6.4.4 Adaptation Rules

Adaptation rules describe basic adaptation operations to be performed on specific parts or
structures of the input content. As depicted in Figure 6.11, they all inherit from the abstract
class AdaptationRule. They have a selector property that contains an XPath expression

4In order to stay conform with the RDF-based syntax of CC/PP, such parameters are serialized as RDF
properties called “paramname index”.

c© Copyright TU Dresden, Zoltán Fiala 147

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

ReplacementRule

AdaptationRule

Rule

UpdateRule

AppearanceRule
LinkWrapperRule

SortingRule

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

hasCondition

Condition

rdfs:range

rdfs:domain

Selector

selector

rdfs:range

rdfs:domain

InclusionRule

rdfs:subClassOf

PaginatorRule

Figure 6.11: GAC rule schema excerpt

[Berglund et al. 2004] in order to unequivocally identify the parts of the XML input content
to be adapted. Whenever there are several adaptation rules addressing the same part of the
input content, they are ordered according their priority properties. The priority property
of an adaptation rule is a non negative integer value. Its usage is optional, the default
priority value is 0. Adaptation rules of a given GAC configuration are executed according
to the descending order of their priorities, i.e. the rule with the highest priority property is
processed first. Adaptation rules with the same priority are executed according to the order
of their occurrence in the GAC’s RDF-based configuration document.

Table 6.1 summarizes the properties used for parameterizing adaptation rules. It specifies
their names, their meaning, their usage (i.e. whether they are required or optional), as well
as their possible values.

Name Meaning Usage Values

selector Identifies the parts of the input
content to be transcoded

required XPath expression

priority Rule priority optional Non negative integer

Table 6.1: Properties of an adaptation rule

In order to use adaptation rules (and the corresponding adaptation operations) in different
application scenarios, a common set of generally applicable rule primitives were identified.
Based on Brusilovsky’s survey on basic methods and techniques for content and naviga-
tion adaptation [Brusilovsky 2001], as well as own results concerning presentation adapta-

148 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

tion [Fiala et al. 2004a], following rules have been selected and implemented5:

6.4.4.1 Appearance Rule

An appearance rule (Class AppearanceRule) realizes one of the most basic adaptation meth-
ods: the selected content is included in the output only if the associated condition is valid.
Appearance rules can address arbitrary (sets of) XML elements, attributes, and text nodes.
In the case when an element is selected, all of its descendant nodes are concerned, as well.
An appearance rule has no additional parameters.

The two rule examples in Listing 6.2 address device dependency by adjusting the original
Web content to the limited presentation capabilities of handheld devices (PDAs). While the
first one omits all images from the input XHTML documents, the second one removes the lists
of publications from them. The XML elements (fragments) to be elided are selected by the
XPath expressions in the rules’ selector properties (see lines 1 and 8). The conditions address
parameters from the adaptation context data which are denoted with a $ sign, respectively.

1 <gac:AppearanceRule rdf:ID="hideImageRule" gac:selector="//img">
2 <gac:hasCondition>
3 <gac:Condition gac:when="($Device!=’pda’)"/>
4 </gac:hasCondition>
5 </gac:AppearanceRule>
6
7 <gac:AppearanceRule rdf:ID="hidePubListRule"
8 gac:selector="//div[@class=‘publications‘]">
9 <gac:hasCondition>

10 <gac:Condition gac:when="($Device!=’pda’)"/>
11 </gac:hasCondition>
12 </gac:AppearanceRule>

Listing 6.2: Appearance rule example

While these appearance rules realize static adaptation, Listing 6.3 also defines one for
adaptivity. The CV of a project member is shown only for users who visit that page for the
first time (i.e. it is elided for returning users). The Visited variable from the adaptation
context data is in this case an array which is parameterized by the id attribute of the currently
selected XML element (in this case the element representing members’ CVs). This way the
condition is appropriately adjusted to each selected CV instance. As a matter of course,
this example assumes that the user’s visits to project members’ homepages (and CVs) are
appropriately tracked during his navigation through the Web application. The corresponding
rule for updating the adaptation context data will be shown later in Section 6.4.5.

6.4.4.2 Element Filter Rule

While an appearance rule allows to include/exclude a whole XML fragment, in some cases it
is meaningful to filter out only an element itself and retain its descendant elements (nodes).
This is typically the case when processing XML elements aimed at formatting the underlying
content, such as the b (bold), i (italics) or u (underline) tags of HTML. For this purpose the
so-called element filter rule (Class ElementFilterRule) was developed. Its selector property

5Since these rules inherit from the abstract AdaptationRule, only their additional properties will be men-
tioned and specified in the rest of this chapter.

c© Copyright TU Dresden, Zoltán Fiala 149

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

1 <gac:AppearanceRule rdf:ID="hideCVRule"
2 gac:selector="//div[@class=’membercv’]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($Visited[@id]==0)"/>
5 </gac:hasCondition>
6 </gac:AppearanceRule>

Listing 6.3: Appearance rule example Nr. 2

can address arbitrary XML elements in the input content. Similar to appearance rules, it has
no additional parameters.

The example shown in Listing 6.4 disables all hyperlinks pointing to the detailed descrip-
tion of publications (on the pages of project members) for users that are logged in as guests.
It filters out all corresponding a elements but does not remove the link anchors (in this case
the titles of the publications). Thus, in this particular scenario this rule implements the
adaptive navigation technique link disabling (see Section 2.2.3).

1 <gac:ElementFilterRule rdf:ID="disablePubLinksRule"
2 gac:selector="//div[@class=’publications’]//a">
3 <gac:hasCondition>
4 <gac:Condition gac:when="$Login==’Guest’"/>
5 </gac:hasCondition>
6 </gac:ElementFilterRule>

Listing 6.4: Element filter rule example

6.4.4.3 Inclusion Rules

An inclusion rule (Class InclusionRule) realizes the inverse mechanism, i.e. the insertion
of external content into the processed Web document. If the associated condition is valid,
XML data from a specific URI (specified by the additional what property of the inclusion
rule) is included in the output document at the place determined by the rule’s selector (see
Table 6.2).

The data to be inserted has to be well-formed XML. Furthermore, the selector property
of an inclusion rule has to address an element node. The optional where property defines
whether the data to be included should be inserted as a preceding sibling, a following sibling,
or as the first child element of the selected XML element. Its default value is child. Whenever
the values preceding or following are used, the selected XML element may not be the input
XML document’s root element. Note that this generic mechanism is a powerful means of
data insertion: the addressed URI can be e.g. the target URL of an HTTP request or even a
complex query to a dynamic data source.

The example shown in Listing 6.5 includes an advertisement at the bottom of the project
homepage for desktop PCs.

While the inclusion rule facilitates the insertion of an arbitrary XML fragment, the at-
tribute inclusion rule (class AttributeInclusionRule) aims at inserting an XML attribute into
an XML element. It has two additional properties that indicate the new attribute’s name
and value, respectively (see Table 6.3).

150 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

Name Meaning Usage Values

what URL pointing to the content to
be included

required String describing an
URI

where relative position to the selected
element

optional preceding|following|child

Table 6.2: Properties of an inclusion rule

1 <gac:InclusionRule rdf:ID="includeAdvertRule"
2 gac:selector="//div[@class=’project’]/*[last()]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($Device==’desktop’)"/>
5 </gac:hasCondition>
6 <gac:what>http://www-mmt.inf.tu-dresden.de/gacadvert</gac:what>
7 <gac:where>preceding</gac:where>
8 </gac:InclusionRule>

Listing 6.5: Inclusion rule example

6.4.4.4 Replacement Rules

A replacement rule (Class ReplacementRule) substitutes specific parts of the input content
with an alternative value. Its selector property can address XML elements, attributes, or
text nodes. The additional with parameter specifies the new value of the selected document
part and is a string (optionally containing context data parameters). While in the case of
XML elements their names are changed, attributes and text nodes get a new value.

As an example, the simple replacement rule shown in Listing 6.6 enlarges XHTML headers
for users with visual impairments by exchanging H3 tags with H1 elements.

1 <gac:ReplacementRule rdf:ID="replaceHeaderRule"
2 gac:selector="//H3">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($visuallyimpaired==’yes’)"/>
5 </gac:hasCondition>
6 <gac:with>H1</gac:with>
7 </gac:ReplacementRule>

Listing 6.6: Replacement rule example

While the replacement rule allows the manipulation of single XML tags, the code replace-

Name Meaning Usage Values

name name of the attribute to be included required String

value value of the attribute to be inserted required String

Table 6.3: Properties of an attribute inclusion rule

c© Copyright TU Dresden, Zoltán Fiala 151

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Name Meaning Usage Values

with Indicates a new element name, attribute
value or text node content

required String

Table 6.4: Properties of a replacement rule

ment rule (Class CodeReplacementRule) is a slightly modified version of it that enables to
replace larger XML code fragments. The rule’s selector property addresses the starting XML
element of the document fragment to be replaced. However, in this case the with property is
not a simple literal, rather a URI addressing a “remote” code fragment (see Table 6.5).

Name Meaning Usage Values

with URI pointing to an XML fragment required String

Table 6.5: Properties of a code replacement rule

6.4.4.5 Link Wrapper Rule

Link wrapper rules (Class LinkWrapperRule) are used to manipulate the target URLs of
hyperlinks found in the input content. Their main application is the modification of hyperlink
targets encountered in the input XML documents. In this way users’ clicks on the appropriate
links can be redirected to a target defined by the GAC configurator. Furthermore, according
to the adaptation context data the link wrapper rules can also add additional (personalized)
request parameters to hyperlinks.

In order to identify the hyperlink references (URLs) to be manipulated the rule’s selector
property is used. The toURL property specifies the new URL (to which the link has to
be redirected). Furthermore, a number of parameters in form of name/value pairs can be
defined in order to attach arbitrary request parameters to the link (see Table 6.6). The
optional keepOldURL parameter indicates that the original URL should be retained as a
special request parameter of the new URL. In this case the oldURLParamName property
determines the name of this special request parameter.

In the running example a link wrapper rule is used to realize a security-specific adaptation.
Its goal is to deactivate a hyperlink that points from the project homepage to another page
presenting information on the project’s budget. For users that are logged in as guests, the
appropriate rule redirects this link to the login page (see Listing 6.7).

1 <gac:LinkWrapperRule rdf:ID="loginRedirectRule"
2 gac:selector="//a[@href=’budget.html’]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($LogIn==’Guest’)"/>
5 </gac:hasCondition>
6 <gac:toUrl>http://www.gacexample.org/login.html</gac:toUrl>
7 </gac:LinkWrapperRule>

Listing 6.7: Link wrapper rule example

152 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

Name Meaning Usage Values

toUrl Name of the new URL optional String

param Additional request parameter optional name/value
pair

keepOldURL Specifies whether the old URL
should be retained as a specific re-
quest parameter

optional true|false

oldURLParamName Name of the request parameter con-
taining the old URL

optional String

Table 6.6: Properties of a link wrapper rule

Note that a link wrapper rule can not only be applied to hyperlink targets but to arbitrary
XML attributes describing URLs, e.g. also to the action attributes of Web forms. The name
link wrapper rule is used because the adjustment of hyperlinks is the rule’s most often used
application scenario.

6.4.4.6 Sorting Rule

Whereas the rules mentioned above address single content units (XML nodes), there are also
rules adapting sets of content units, such as all child elements or all variants of a specific
content unit. One of them is the sorting rule (Class SortingRule) aimed at ordering sets of
XML elements according to one of their attributes. The elements to be sorted are addressed
by the XPath expression specified by the rule’s selector property. They are ordered based on
the value of the attribute defined by the sorting rule’s additional by property. This can be
either an XML attribute of the selected nodes, or a value of a context data parameter that
is parameterized by such an attribute. The order attribute dictates whether the ordering is
ascending or descending.

Name Meaning Usage Values

by Specifies the attribute according to
which the sorting is performed

required String

order Specifies if the ordering is ascending
or descending

required asc|desc

Table 6.7: Properties of a sorting rule

In our running example the list of project members shown on the project homepage is
sorted according to whether (and how often) the user already saw their homepages (see
Listing 6.8). The attribute according to which the sorting has to be performed is defined by
the adaptation context data parameter called Visited. It is an array that is parameterized
by the unique identifiers (id attributes) of content elements. Members the user was already
interested in are shown in the beginning of the list. Therefore, the rules order property has
the value desc. As no condition is defined, this rule is always executed. Note that this is also

c© Copyright TU Dresden, Zoltán Fiala 153

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

an example of adaptivity.

1 <gac:SortingRule rdf:ID="sortMemberRule"
2 gac:selector="//div[@class=’member’]">
3 <gac:by>$Visited[@id]</gac:by>
4 <gac:order>desc</gac:order>
5 </gac:SortingRule>

Listing 6.8: Sorting rule example

6.4.4.7 Paginator Rule

A paginator rule (Class Paginator Rule) aims at dividing sets of XML elements into a number
of smaller subsets, each containing only a predefined number of elements. It is typically
applied to efficiently place content elements into a subsequent series of grouping elements
(e.g. XML elements denoting container-like “grouping” structures such as pages, sections,
slices or components), so that only a limited number of content elements is shown in a single
group.

The rule’s selector property addresses the XML elements, the subelements of which should
be paginated. As shown in Table 6.8, these subelements are then grouped by grouping
elements, the name of which is specified by the additional group property. The number of
content units in each resulting group is determined by the number property. As a matter of
course, the size of the last group to be created can be less than number, because it contains
only the remaining elements.

Name Meaning Usage Values

group Name of the grouping element required String

number Number of subelements in each resulting
group

required Integer

Table 6.8: Properties of a paginator rule

6.4.5 Update Rules

Unlike adaptation rules, update rules (Class UpdateRule) aim at updating the adaptation
context data. They facilitate to change existing context parameters or to create new ones.
Optionally, they can also have a selector property. In this case they are triggered for each
selected XML node. Otherwise, they are activated only once (i.e. once each time the GAC
processes an input document).

The action performed by an Update Rule is specified in its do property, a string describing
a value assignment to an adaptation context data (ACD) parameter. The phase property
determines whether the rule is executed before or after the transcoding process. While the
update rules with the phase value pre are executed before adaptation rules, those with the
phase value post are processed after them. That is to say, while the effects of an update rule
with the phase value pre can already influence the actual adaptation transformations, the

154 c© Copyright TU Dresden, Zoltán Fiala

6.5. Implementation Issues

effects of an update rule with the phase value post can be perceived only at the next page
request. Since the usage of the phase property is optional, its default value is pre6.

Name Meaning Usage Values
selector selects parts of the input XML content required String

do Specifies the action to be performed required String

phase Specifies if the update rules is performed be-
fore or after the transcoding process

optional pre/post

Table 6.9: Properties of an update rule

Among the Adaptation Rules of our running example two rules supporting adaptivity
were mentioned (see Listing 6.3 and Listing 6.8). Both require to keep track of the content
elements already been visited by the user. This update mechanism can be easily supported
by the following very simple Update Rule (Listing 6.9).

1 <gac:UpdateRule rdf:ID="trackVisitsRule"
2 gac:selector="//div[@id]">
3 <gac:do>$Visited[@id]=true</gac:do>
4 <gac:phase>post</gac:phase>
5 </gac:UpdateRule>

Listing 6.9: Update rule example

The XPath expression in the rule’s selector attribute identifies all content elements by
addressing XML elements containing an id attribute. The value assignment described in
the rule’s do property tracks the fact that a content element was displayed by appropriately
setting the $Visited variable. Note that this variable was already referred to in the adaptation
rules shown in Listing 6.3 and Listing 6.8. As this rule is not associated with a condition it
is always triggered. However, since its phase attribute has the value post, it is activated only
after all other adaptation rules were performed. That is to say, its effect can be perceived
only at the user’s next page request when the appropriate adaptation rules are performed
again.

To demonstrate the “interplay” of update rules and adaptation rules, Listing 6.10 illus-
trates a more complex adaptation strategy consisting of three rules. The first rule aims at
counting a user’s page visits in the example application by incrementing the NumberOfClicks
variable for each requested page. Again, it has no condition associated, i.e. it is always trig-
gered. If the value stored in the $NumberOfClicks variable exceeds the average number of
page visits (counted for all user sessions) by a given percentage, the second rule classified the
user as “interested in details”. In this case the third rule (InclusionRule) includes additional
information about the project at the project homepage.

6.5 Implementation Issues

In order to efficiently “reuse” the functionality of the pipeline-based document generation
architecture introduced in Section 4.5, the GAC was implemented as one of its transformer

6Introduced by the AHAM reference model for adaptive hypermedia applications [De Bra et al. 1999], the
phase attribute is widely used in systems supporting adaptivity (see Section 2.2.5).

c© Copyright TU Dresden, Zoltán Fiala 155

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

1 <gac:UpdateRule rdf:ID="clickCounterRule">
2 <gac:do>$NumberOfClicks=$NumberOfClicks+1</gac:do>
3 <gac:phase>post</gac:phase>
4 </gac:UpdateRule>
5
6 <gac:UpdateRule rdf:ID="trackInterestRule">
7 <gac:hasCondition>
8 <gac:Condition gac:when="$NumberOfClicks>$AverageClicks*1.5"/>
9 </gac:hasCondition>

10 <gac:do>$InterestedInDetails=’yes’</gac:do>
11 <gac:phase>post</gac:phase>
12 </gac:UpdateRule>
13
14 <gac:InclusionRule rdf:ID="includeDetailsRule"
15 gac:selector="//div[@id=’project’]">
16 <gac:hasCondition>
17 <gac:Condition gac:when="$InterestedInDetails==’yes’"/>
18 </gac:hasCondition>
19 <gac:what>http://www.gac.org/AdditionalInformation/</gac:what>
20 </gac:InclusionRule>

Listing 6.10: Interplay of update rules and adaptation rules

modules. As illustrated in Figure 6.12, it can be used at arbitrary stages of the document
generation pipeline to perform adaptation transformations on its incoming XML-based input.
Each GAC transformer is configured by its RDF-based configuration document. Furthermore,
each of them has read and write access to its adaptation context data (ACD), which is a part
of the architecture’s context model. As shown in Figure 6.12, these parts are typically disjoint.
However, the current implementation allows the GACs to access arbitrary parameters from
the overall context model.

Since the document generation architecture is based on the publication framework Co-
coon, the GAC was developed as a custom Cocoon transformer [Ziegeler and Langham 2002]
written in Java. Inheriting from Cocoon’s AbstractDOMTransformer class, it performs the
corresponding data transformations on the JDOM [@jdom] view of its input XML documents.
In order to effectively realize adaptation and context data update rules, a Java class was im-
plemented for each rule type introduced in Section 6.4. The corresponding implementations
are optimized for performing the appropriate adaptation operations (elision, separation, in-
clusion, replacement, sorting, etc.) on the processed XML content.

At configuration time, the GAC processes its RDF-based configuration file and retrieves
all rule definitions contained in it. For each retrieved rule it instantiates the corresponding
Java rule class and sets its parameters, respectively. Sorted by their priority, the instantiated
rules are registered by the RuleManager , a Java object maintaining a dynamic array of rule
objects. This rule instantiation process is performed only once, i.e. at the time when the Web
application is initialized.

At run-time the GAC is triggered by receiving XML content from its preceding data trans-
formation components in the Cocoon pipeline. In this case the RuleManager is activated that
triggers its registered rules one after another. Utilizing the XPath API, each rule determines
the set of XML elements it is assigned to and evaluates whether the corresponding condi-
tions hold. If they hold, the corresponding data transformations or context data updates are
performed and the next rule object is invoked. After the last rule is triggered, the resulting
XML document is sent to the next processing step in the Cocoon pipeline.

156 c© Copyright TU Dresden, Zoltán Fiala

6.5. Implementation Issues

Document Generation Pipeline

Context Model

Context Modeling

Request

Transform

GAC 1

...

Profile
ACD 1

Update

ACD n

Transform

GAC n

Transform
XML
input

content

Adapted
Web
Page

conf. 1 conf. n

Figure 6.12: GAC implementation overview.

The context model (containing the GAC’s adaptation context data) was realized based on
Cocoon’s so-called authentication context. It allows to store session and context information
in form of arbitrary XML data structures that can be manipulated by DOM operations.
Furthermore, in a later version, another implementation of the ACD repository based on the
open source RDF database Sesame [Broekstra et al. 2002] was also realized . In this version
the GAC implementation utilizes SeRQL (Sesame RDF Query language) for retrieving or
updating this data. The usage of SeRQL allows for expressing more powerful queries (both
select and update operations) on the ACD, as well as the integration of heterogeneous context
data sources.

6.5.1 Running Example Implementation Configuration

While Figure 6.12 illustrated the general architecture of a GAC-based implementation, Fig-
ure 6.13 depicts the concrete GAC configuration of the running example used throughout this
chapter. The input documents of the document generation pipeline are Web pages delivered
in form of XHTML documents. They are subdued to two GAC transformers, each of which
realizes a certain adaptation concern. For the sake of simplicity, in this scenario both GACs
are configured to utilize the same adaptation context data repository.

Since the two GACs are switched immediately behind each other, note that it would be
also possible to use only one GAC that is configured by all adaptation and update rules.
Still, in order to support a better separation of concerns, the rules executed by each GAC
are grouped according to a certain adaptation aspect. The first GAC transformer performs
adaptation operations concerning device dependency. The second one performs all other
adaptations that deal with user-specific personalization issues. Note that a main advantage
of this separation of concerns with different GACs is the possibility to easily “plug-in” or
remove a certain adaptation aspect from the entire application. Furthermore, it also nicely

c© Copyright TU Dresden, Zoltán Fiala 157

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Transform

GAC 1

Transform

GAC 2

original
XHTML

page

adapted
XHTML

Page

Adaptation

Concern 1:

device

dependency

Adaptation

Concern 2:

personali-

zation

Figure 6.13: Running example implementation configuration.

corresponds to the preferred strategy of a Web designer who tries to specify independent
application concerns (in this case adaptation issues) separately from each other. The usage
of an implementation based on a series of GACs enables to step-by-step incorporate all these
additional concerns into the original Web application at run-time.

Figure 6.14 depicts two screenshots from the “adapted versions” of the running example.
The first one (on the left) shows the project overview page as it is presented on a desktop
browser. Note that, according to the inclusion rule described in Listing 6.5, an “advertise-
ment” of the GAC was inserted on its bottom. It indicates that “Adaptation on this site
is powered by the GAC”. Furthermore, the list of project members was also dynamically
reorganized based on the user’s visits to their personal homepages. The second screenshot
(on the right) shows the Web page of a particular project member on a handheld device.
Based on the adaptation rules addressing device dependency, both the image of the project
member and the list of his publications was omitted.

6.5.2 Extensibility Issues

The GAC provides a repertoire of generic adaptation operations (rules) that are applicable on
arbitrary XML input. Nevertheless, in some cases a designer might require further (e.g. more
specific) adaptation rules in order to cope with a given transcoding scenario. The reason for
this could be the requirement to specifically target the characteristics of a given XML format
(or Web application) by the provision of a set of designated adaptation rules.

As a typical example we mention the well-known “table transform” [Hwang et al. 2003]
transcoding operation. It is used for displaying large XHTML tables on handhelds either by
unrolling them to a list, or by splitting them to a number of smaller tables (or subtables)
with a configurable number of columns and/or rows. These operations can be reduced to
a series of basic (generic) transformation operations (inclusion, omission, replacement, etc.).
Yet, a provider might need a designated rule for them in order to 1) have a more “high-
level” view on these operations or 2) to achieve a better performance by taking into account
the specific characteristics of the given XML format (in this case XHTML) and putting all
required functionality in one rule.

To realize such extensions two steps have to be performed. First, a new GAC adaptation
rule (and its possibly parameters) have to be specified in the GAC rule schema. Second,

158 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

Figure 6.14: Running example screenshots

the appropriate adaptation operations to be performed on the input XML content have
to be implemented. Since the extensible rule classes of the current GAC implementation
allow to utilize DOM operations on the input content, programmers can easily add arbitrary
functionality, either by programming it themselves or by importing existing DOM-based data
transformation implementations. Furthermore, we note that the DOM (JDOM) libraries used
for the GAC’s implementation also allow programmers to apply any arbitrary existing XSLT
stylesheet on the DOM tree of the actual document.

Besides adaptation rules, a Web developer using the GAC might also need further func-
tionality for updating the adaptation context data. While the current GAC update rules are
quite generic, we note that they are rather low-level and do not support for the expression
of more specific context modeling (e.g. self-learning) algorithms. Again, the use of a Java-
based implementation and the standardized CC/PP-based interface to the adaptation context
data allow to easily incorporate existing context modeling components into the GAC’s rule
repertory.

6.6 Conclusion and Discussion

This chapter introduced the GAC, a generic transcoding tool for making XML-based Web
applications adaptive. Based on the key observation that an Adaptive Web Information
System is typically realized as a series of transformations, it was shown how it can add
additional adaptation concerns to an existing Web application without the need to completely

c© Copyright TU Dresden, Zoltán Fiala 159

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

redesign it. First, an overview of the GAC’s main functionality was given, and a number of
its possible application scenarios were demonstrated. Then, an RDF-based rule language
for the specification of the GAC’s exact functionality was presented. The different kinds
of content adaptation and context data update rules were illustrated based on a running
example. Finally, a prototypical implementation (developed by the author of this thesis) for
realizing the GAC’s main functionality was presented.

As could be demonstrated, the current GAC architecture provides the necessary function-
ality to incorporate different kinds of adaptation into XML-based Web applications. Still, the
author is aware of the fact that, on top of this foundation, there is a need for concepts and
visual GAC configuration tools that would allow Web developers to specify such additional
adaptation concerns in a high-level systematic way. This issue of “GAC-based authoring”
was not a focus of this work and has thus not been sufficiently addressed, yet. We note,
however, that initial ideas in this direction will be discussed within the scope of future work
ideas presented in Section 7.3.

Nevertheless, an interesting aspect to be discussed here is the relation of the GAC to
the concern-oriented component model presented in Chapter 4. Even though the GAC was
inspired by the adaptation functionality of that model and its pipeline-based document gen-
eration architecture, note that it pursues a complementary approach. Whereas a Web pre-
sentation built of document components contains adaptation definitions from the beginning
in a component-based inherent way, in a Web transcoding scenario this adaptation is added
to the underlying application afterwards in a rule-based manner. As a matter of course, both
solutions have a number of advantages which mainly depend on the respective application
scenario. The rest of this section is dedicated to the discussion of these differences in more
detail.

Adaptation by Transcoding: Advantages

In general, the separate specification, storage, and implementation of “external” adaptation
rules has the following advantages.

Adaptation support without content reauthoring: The providers responsible for adap-
tation do not need to manipulate or reauthor the input content in order to prepare it
for adaptation. That is to say, XML documents from arbitrary content authors can be
taken as input. Furthermore, the provider of the transcoding solution does not need to
be granted write access to this original content.

Adaptation support for future Web applications: Adaptation rules may be specified
also for Web pages (or in more general for Web content) that have not been even
created, yet. As an example, a GAC configurator might create a rule dictating that all
images in any incoming XHTML document have to be elided for handheld devices. As
a matter of course, this rule is applicable for all kinds of dynamically created volatile
XHTML input, too.

Flexible adaptation reconfiguration: As a consequence of the former advantage, the
same input document can be used in different adaptation scenarios. It is merely the
configuration of the transcoder that has to be altered in order to change the current
adaptation policy. For instance, while a configuration C1 might be used to adjust
XHTML documents to mobile devices with small displays, another configuration C2
could be used to transcode them for users with visual impairments. Since the corre-
sponding adaptation specification are not intertwined with the content to be adapted,

160 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

it is easily possible to add new ones or remove existing ones without having to redesign
the original application. Furthermore, the possibility to switch several transcoders in
line also allows to easily change the order or priority of the applied adaptation con-
cerns. Thus, instead of using “fixed adaptations” that are “hard-wired” to the original
content, the configurator of the GAC can “adapt the adaptation” to the particularities
of the given transcoding scenario.

Independent application and adaptation evolution: Due to the separate storage of
transcoding rules from the original content, the introduction of a new GAC rule type
or the modification (or extension) of an existing one does not require to change all
corresponding input documents. Furthermore, a change to a given rule’s implementa-
tion (e.g. for the sake of performance enhancements) affects only the “inner life” of the
GAC, not necessitating to change the entire Web application to be adapted. That is to
say, the specification and implementation of adaptation rules may evolve independently
from the input documents.

Support for distributed adaptation operations: The flexible assignment of adaptation
rules to documents’ parts by XPath expressions allows to attach rules to multiple frag-
ments of a document. Thus, a single adaptation rule be used to adjust different parts
(components) of a Web page. This advantage is especially important because adaptation
concerns (e.g. the omission of high quality pictures for devices with low presentation ca-
pabilities) are typically not pinpointed to a specific element of the input content, rather
spread over several similar content elements (e.g. in this case all appropriate images)
in a Web application. Consequently, such an adaptation rule addressing a number of
content elements can be easily added, removed, or altered by changing only a small
part of the separately stored and managed adaptation configuration.

Adaptation by Transcoding: Limitations

On the other hand, an adaptation scenario based on a transcoding solution utilizing external
adaptation rules has also some limitations.

Adaptation by content filtering: The basic principle of the GAC is to perform context-
dependent transformations on an already existing content stream. Thus, the adaptation
operations supported by it are “restricted” to filtering and/or reorganizing this input
content, not supporting to easily add new content alternatives. Even though inclusion
rules allow to insert XML-fragments into the processed Web documents, the introduc-
tion of a new adaptation variant (e.g. a video representation of all products of an online
shop for users with high bandwidth connections) typically requires a more thorough
reengineering of an existing Web application.

Need for detailed knowledge of the input XML content: The efficiency of a trans-
coding solution significantly depends on how much the “configurator” of transcoding
rules knows about the input content. Generally, the more he is familiar with the struc-
ture (e.g. the underlying data model or schema) of the input documents, the more
powerful adaptations he can to express. Still, this configurator is often independent
from the author(s) of the original application. Furthermore, modern Web applications
are increasingly developed with high-level visual authoring tools that aim at hiding the
rather low-level XML notation of the the underlying engineering approach. On the
contrary, if a Web author (or designer) considers adaptation as an inherent issue of the

c© Copyright TU Dresden, Zoltán Fiala 161

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Web application to be created from the beginning, an appropriate process model can
optimally support him.

Dependence on the semantic richness of the input content: Another important ques-
tion is at which stage of the overall data transformation process a transcoding tool can
be utilized. As stated above, its efficiency mainly depends on how well structured the
input data is, especially how much metadata it contains. Increasingly, modern Web In-
formation Systems utilize XML-based representations of the data they process. Starting
from a well annotated data structure, they perform a number of transformations leading
to a hypermedia presentation. Of course, if the data transformation pipeline cannot be
“cut up” and the transcoder can only operate on top of the final presentation, then its
adaptation capabilities are mostly restricted to presentation adaptation.

Dependence on the underlying architecture: As a consequence of the previous issue,
the applicability of the GAC also depends on the overall architecture of the underlying
Web application. That is to say, the question of where and how efficiently the GAC can
be used is significantly influenced by the modularity and extensibility of that architec-
ture. Furthermore, we mention that modern Web applications are typically developed
and maintained by complex engineering frameworks, application servers, content man-
agement systems, etc. As a matter of course, a possible GAC-based extension has to
be in “perfect harmony” with all these architecture components.

Low-level adaptation specification: The usage of a transcoding tool (e.g. the GAC) re-
quires a rather low-level specification of adaptation transformations in terms of adapta-
tion rules that operate on XML elements. Furthermore, since the GAC and its configu-
ration language are by definition independent of a given XML grammar or methodology,
it is also difficult to provide a generic graphical authoring tool for intuitively adding
adaptation to any existing Web application in a high-level manner. Consequently, such
a graphical tool has to be created separately (e.g. as an “add-on” or a “plug-in”) for
each specific authoring tool.

No inherent support for type safety: In principle, external transcoding rules can per-
form arbitrary transformations of the input content. Nevertheless, it might be the case
that different adaptations (such as the omitting of a content element or XML tag) lead
to invalid documents, i.e. to documents that already do not correspond to their original
data schema. This might lead to problems when the affected documents are processed
by further transformation steps, e.g. in order to be presented in a given output format.
On the other hand, a component model with built-in support for adaptation permits
only document transformations that assure type safety and validity.

Lacking support for component-based reuse: Separating adaptation rules from the un-
derlying application prevents the efficient reuse of adaptable implementation artefacts
in a component-wise, black-box-like manner. Reusing a part of the base application in
another composition scenario also implies to extract its corresponding adaptation recipe
from the original application’s adaptation configuration and to “transfer” it to the new
application’s adaptation configuration in a possibly modified way. Thus, the detached
management of application and adaptation code can lead to higher maintenance efforts.

Orphan adaptation rules: Since in a transcoding scenario the adaptation rules are fully
detached from the input content, they also have to be maintained separately. However,

162 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

this separate storage of external transcoding rules (e.g. GAC rules) might lead to incon-
sistency problems if changes to the structure of the input documents (i.e. the documents
to be adapted) are made. For instance, if the XPath expression used as the selector of
a given GAC rule addresses e.g. the second subelement of a given XML element, then
the inclusion of a new preceding sibling can lead to an unexpected transcoding effect.
Especially, such inconsistencies arise if the person modifying a Web application is not
familiar with its corresponding GAC-based adaptation configuration.

However, this problem can be reduced to the problem of so-called orphan annota-
tions [Brush et al. 2001] (i.e. external annotations that can no longer be attached to
a document because it was modified) known from Web annotation systems. While
not being a central issue of this work, we note that there have been several ap-
proaches proposed that address this problem by utilizing so-called robust annotation
positioning techniques. For more information on this topic the reader is referred to
[Brush et al. 2001, Abe and Hori 2003].

To sum up, the separation of adaptation from the original application provides for more
flexibility in terms of reconfiguration and evolution (adding, removing, or reordering adapta-
tion aspects, inventing new adaptation rules, etc.), and the possibility to define adaptation
conditions (operations) that are distributed over multiple content elements while using only
one adaptation rule. On the other hand, a solution based on adaptive document components
provides better reusability (in terms of adaptable content artefacts), consistency, validation
support, as well as the possibility to use dedicated high-level design and authoring tools.

We remark furthermore, that a combined usage of both approaches is also conceivable. It
is possible to design and implement an adaptive Web application based on reusable docu-
ment components and, if demanded, flexibly add additional and rather “volatile” adaptation
concerns (e.g. adaptations that are only needed in a specific deployment of the application)
to it based on one or more GACs. In this case the GACs mainly serve as “customizers” that
make the application runnable in a given scenario that was not foreseen at the time of its
original design. Thus, while a component-based approach provides for “fixed” adaptations,
GACs can be utilized for further “adapting these adaptations”. Note that the modularity of
the component-based document format’s (staged) document generation architecture allows
to plug-in GAC components at any arbitrary stage of the data transformation pipeline.

c© Copyright TU Dresden, Zoltán Fiala 163

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

164 c© Copyright TU Dresden, Zoltán Fiala

