Building Self-Managing Web Information
Systems from Generic Components

Geert-Jan Houben', Zoltédn Fiala?, Kees van der Sluijs', Michael Hinz?

! Technische Universiteit Eindhoven
PO Box 513, NL 5600 MB, Eindhoven, The Netherlands
{g.j.houben, k.a.m.sluijs}@tue.nl
2 Technische Universitdt Dresden
Mommsenstr. 13, D-01062, Dresden, Germany
{zoltan.fiala, mh5}@inf.tu-dresden.de

Abstract. The increasing need for device independence and person-
alization forces organizations to automatically adapt their Web Infor-
mation Systems (WISs) to individual users and their client platforms.
Moreover, the Web’s evolution to a dynamic interaction medium also
requires such WISs to be self-adaptive, i.e. to dynamically adjust them-
selves to a constantly changing reality. Still, there are no generic soft-
ware components to manage this multitude of adaptation aspects. This
paper presents the Self-Adapting GAC (SAG), a generic component for
realizing self-managing adaptive WISs. It has the capability to perform
adaptive data transformations, but it can also dynamically reconfigure
itself to the current situation. For configuring the SAG an RDF-based
rule language is introduced, providing rules for both content adaptation
and self-configuration. Moreover, based on the modular document gener-
ation architecture of the AMACONT project an implementation of the
SAG is provided. The resulting architecture is explained in detail and
elucidated by a running example prototype.

1 Introduction

Organizations in search for effective support from their information systems are
faced with an increasing complexity involved in the combination of software
and information. With the evolution of the Web, the development of Web-based
information systems showed an even bigger demand for ways to control the
design of the systems. The Web features a key step of standardizing software,
or at least parts of it. Standards like HTTP and tools like Web browsers reduce
most of the engineering of Web applications to the modeling of the content in
terms of languages like HTML.

However, this rather simple mechanism of the “surface Web” does not suffice
for the professional information systems that get their content from the “deep
Web”, the Web that retrieves its content from strongly structured data reposito-
ries such as databases. These Web Information Systems (WISs) [1] are generally
characterized by data transformations: the content from the sources available via

the Web is transformed by the WIS into nice presentations in HTML or similar
formats. Providing functionality on the basis of such data transformations leads
to concepts like adaptation: in order to get specific functionality the generic
transformation is adapted to the situation. Many approaches for adaptation
use tailor-made solutions, but there are also generic approaches available [2, 3].
In recent work we introduced the Generic Adaptation Component (GAC) [4],
a software component that with a little configuration produces the right data
transformations (adaptations).

In this paper we consider an extension of this standard software component
so that besides adaptive data transformation it can also adapt itself to the situ-
ation by changing its own configuration. With this new component, called Self-
Adapting GAC (SAG), we are able to easily construct the complex functionality
of WISs that can configure themselves in a dynamic environment.

First, in Section 2 we extensively discuss the role of adaptation in an Adaptive
WIS (AWIS) and make the distinction between static and dynamic adaptation.
Then, in Section 3 we introduce SAG. We show that it is a generic component
being able to do transformation given some configuration (e.g. some describing
model). Furthermore we show that it can configure itself by maintaining a dy-
namic context model. After that, based on the modular document generation
architecture of the AMACONT project [5], we discuss the implementation in
Section 4. There, we describe how to create an AWIS by placing several SAGs
in a line. Furthermore, we expose a number of implementation details and a link
to the actual running prototype. Throughout the paper we use a concrete appli-
cation as a running example to help the reader understand the main concepts.

2 Adaptation in WIS architectures

Creating an Adaptive WIS is a complex task requiring to consider a multitude of
design aspects. It is therefore beneficial to extract the common functionality of
these applications, such as navigation, adaptation and user interaction. Frame-
works that enable the generation of AWISs by configuring a limited number of
models can greatly simplify the life of developers and give them more control.
Furthermore, by providing them with configuration and adaptation primitives
they are able to generate an AWIS that can adapt itself to a changing context.

2.1 Adaptation Types

Current AWIS frameworks like Hera [6], OOHDM [7], SHDM (8], WebML [9],
WSDM [10] etc. partition AWISs into a number of separate layers. In this way
they try to reduce complexity and make the AWIS controllable. A typical parti-
tion is by discerning content, navigation, and presentation. The content structure
describes the input in term of concepts and the relationships between these con-
cepts. For example, this layer gives room to integrate data from different data
sources. In the navigation layer the content is semantically structured with re-
lationships specific for the application (navigation, interaction) setting in which

the WIS is used; for instance based on a business model. A typical example of
such a relationship structure is the navigation structure for the browser. Within
the navigation the semantic relationships describe the content elements that are
on a page and how these connect to content on other pages. In the presentation
layer the presentation layout of the presentation pages is described. Examples
of this are defining style elements, sorting order and placement [11].

Within these layers the notion of adaptation can be extended. Based on [12],
we distinguish different kinds of adaptation, namely adaptability and adaptiv-
ity to the person and the context. Adaptability (or static adaptation) means
that the generation process is based on available information describing the sit-
uation in which the user will use the presentation, e.g. color depth and layout
preferences. Adaptivity (dynamic adaptation) is the adaptation included in the
generated adaptive hypermedia presentation. It means that all layers within the
application are dynamically affected by the user’s knowledge. The user’s knowl-
edge is determined by interpreting it’s interaction behavior, i.e. following links
and entering data. Possible examples of adaptability and adaptivity across the
design levels are summarized in Table 1.

| | Adaptability | Adaptivity
Content level image adaptation to media adaptation to
color depth of browser |fluctuating bandwidth
Navigation level |hiding specific links link sorting according to
for unauthorized users |user’s changing knowledge
Presentation level|CSS adaptation to layout rearrangement when
user’s layout preferences|resizing the browser’s window

Table 1. Adaptability /adaptivity examples across the design levels

2.2 Data Transformations for Presentation Generation

While we see different types of adaptation, in practice most of the adaptation
is realized through data transformations. Languages like XSLT or Java that
support the transformation of content data in formats like XML and HTML can
be used to express how the content is adapted to the context. The adaptation of
the content to the context is in fact realized through parameterization of the data
transformations. The models used in methods such as Hera become parameters
that drive the data transformations: while the models for the content describe
the content that needs to be transformed, the models for the adaptation describe
how that transformation should be done in this context.

With this we can generate a presentation that best suits the situation of the
user and the context, and we can change the presentation while being used. These
types of adaptation lead to the use of two additional models for the adaptation;
one for user modeling and one for modeling the usage context. The latter is used

to model conditions that determine the specified behavior of the presentation.
These two models are dynamic in the sense that they depend on the user and
can get updated during browsing. In order to complete the application-user
interaction support, there is a need for a data feedback mechanism. This allows
user input for the underlying application and a more extensive mechanism for
changing the user model and context.

2.3 Generic Adaptation Components

Most currently used AWISs are proprietary solutions serving a specific appli-
cation scenario from a specific domain. They are developed by experts being
responsible for the complete design, implementation, configuration and deploy-
ment of those systems. Recently emerged frameworks for AWIS design [6, 7, 8, 9]
assume to develop AWISs “from scratch” by using rich design models in which
the adaptation is embedded. These frameworks involve quite some predefined
different steps and every step comes with a rather steep learning curve.

From the point of view of the software, there is however a big improvement
possible. As all steps involve similar data transformations, it would be preferable
to have a generic component that can be used in all steps. In this way the learn-
ing curves may be less steep. Furthermore, developers can thus lace their own
AWIS framework, applicable to their specific applications and methodology. As
already mentioned, we recently introduced the Generic Adaptation Component
(GACQC) [4] aiming at adding adaptation to WISs.

However, integrating rich kinds of user action with the presented data in-
troduces considerable complexity in such an adaptation component. Typically,
standard adaptation implementations do not provide sufficient support for de-
velopers that aim at adding user interaction to their existing applications that
goes beyond the traditional link-following. In those cases the capability of the
component to receive feedback from the presentation and react to that is a must
to enable the more advanced user interaction. At the same time, this additional
capability allows more possibilities to influence the adaptation component’s con-
figuration. In this way, the adaptation component moves from a rather modest
transformer of content to a more self-controlled provider of information.

This paper’s topics aim at configuring dynamic Web applications. We deal
with questions like how to extend the capability to adapt to a level of self-
configuration and how to exploit generic software components to manage the
multitude of adaptation aspects?

We illustrate our solutions with the running example used throughout this
paper [13]. The example is a dynamic WIS providing information about our
research project called “Hera meets AMACONT!”. The project is described by
a set of attributes, such as a name and a textual description. There are members
working at the project, each characterized by a name, a CV, a picture, as well
as some contact data. They produce publications on their research efforts, which
are described by a title, the name of the corresponding conference or journal,
and the year of publication.

3 A Generic Component for Building Adaptive WIS

In this Section we present the SAG, a generic software component for adapta-
tion to data transformations with the capacity to change its own configuration.
Figure 1 shows how SAG is embedded in the overall Web infrastructure. The
component receives and processes XML-based content, for example provided by
a Web application content generator or Web server. It adjusts and outputs this
content according to the context, for example the preferences and properties
of individual users and their client devices. In return for the output it receives
interaction requests from clients, such as page requests or queries etc. Based on
this requests it will perform corresponding actions. Thus, the component can
provide a Web interface to take care of the application-user interaction in which
the application sends XML data to the user and receives back corresponding
requests.

Self-Adapting Generic Adaptation Component

/‘sG

Request <—r———

Interaction

— Request
Processor 9

adaptation
context
data

1866113

Generic
Adaptation

\ Component

Fig. 1. SAG overview.

—p XML Data

The basic data transformation (adaptation) part of the SAG is based on
our Generic Adaptation Component (GAC [4]), a transcoding tool aiming at
dynamically adapting XML-based Web input to the current adaptation context
data. Being generic, the GAC can perform different adaptations on its input, the
recipe for which is specified by its configuration. This configuration consists of a
set of adaptation rules, each dictating a different content adaptation aspect. To
take the current state of the user and device context into account, adaptation
rules can reference arbitrary parameters from the adaptation context data. In
order to support adaptivity, the configuration also contains update rules allowing
to manipulate this context data according to the user’s interaction history.

On top of the GAC’s basic data transformations (in Figure 1 the data flow
from left to right) the SAG is also capable of processing interaction requests,

depicted by the flow from right to left. These requests comprise all information
received from the client side, such as page requests, queries, data sent by submit-
ting forms etc. The SAG can serve (parts) of these requests on its own, and/or
redirect them to other processing units in a possibly modified way. In terms of
Figure 1 the former means that the component sends output data to the right,
while the latter means that a request is passed on to the left. As possible pro-
cessing actions we mention the updating of the adaptation context data or the
re-triggering of the data transformation process. The recipe for these actions is
also described in the configuration of the SAG by means of the request processing
rules.

3.1 WIS Composition

While the scenario shown in Figure 1 utilizes only one SAG, it is possible (and
advisable) to employ several independent SAGs at different stages of a WIS
generation process. Consider an example in which XML data gets adjusted to
the user for personalization, the adjusted XML gets transformed to HTML, and
subsequently the HTML data gets adjusted to the presentation capabilities of a
PDA. This overall process can be viewed as a sequence of transformations. As
described in Section 2, a WIS can be efficiently realized with three layers, each
responsible for its own specific adaptation processes. Thus we observe, how a
typical AWIS can be put together from generic SAGs, each realizing one of its
transformation layers (see Figure 2).

5
m SAG H SAG]:::::: Client
data

Fig. 2. SAG composition

In Section 3.2 we first show how the basic data transformations (i.e. the flow
from left to right) are adapted. Then, in Section 3.3 we show how the feedback
(from right to left) is processed, thus realizing the changes to the adaptation
configuration.

3.2 Adaptation Configuration

We now consider in more detail the configuration of the SAG. As we said earlier,
the data transformation part of the SAG is based on the GAC. It is controlled by
its RDF-based configuration that consists of a set of rules specifying the content
units to be adjusted, the adaptations to be performed on them, and (in the case
of adaptivity) the way the adaptation context data has to be updated.

A graphical excerpt of the RDF schema defining our rule hierarchy is de-
picted in Figure 3. The top of this hierarchy is the abstract class Rule. A Rule

is always bound to a Condition, i.e. it is activated if and only if that condi-
tion holds. A Condition is an arbitrary complex Boolean expression referencing
parameters from the adaptation context data. Rules can be either Adaptation
Rules or Update Rules.

hasCondition

rdfs:subClagsOf

SortingRule
InclusionRule
) PresentationRule
SeparationRule

Fig. 3. GAC Rule Schema.

rdfs:suRClassO

rdfs:supClassOf

ReplacementRule
AppearanceRule

Adaptation Rules describe adaptation operations to be performed on specific
parts or structures of the input content. They have a selector property that con-
tains an XPath expression for unequivocally identifying these parts. Whenever
there are several rules addressing the same content element, they are ordered by
their priority property.

In order to use our Adaptation Rules (and the corresponding operations) in
different application scenarios, we decided to identify a common set of generally
applicable rule primitives. Based on Brusilovsky’s survey on basic methods and
techniques for content and navigation adaptation [14], as well as our recent
work on presentation adaptation [11], we selected and implemented the following
rules?:

An Appearance Rule realizes one of the most basic adaptation methods: the
selected content is included in the output only if the associated condition is valid.
The following example omits images (in Hera referred as Slice.member.picture)
for devices being unable to display them. Note that adaptation context data pa-
rameters are denoted with a $ sign.

<gac:AppearanceRule gac:selector="//Slice.member.picture">
<gac:Condition gac:when="($ImageCapable==yes)"/>
</gac:AppearanceRule>

3 In the rule illustrations from our concrete running example, the XML data happens
to be organized in terms of slices, which are the navigation primitives discerned in
Hera; we point out that the rules are however generally applicable.

Separation Rules are a variation and less strict modification of Appearance
Rules. Instead of being elided, content units with invalid conditions are put to
a separate page and replaced by a link to that page.

An Inclusion Rule realizes the inverse mechanism. If the condition is valid,
external content referenced by an URL is included in the output document at
the place determined by the selector. Note that an additional property (what)
is used to specify that URL. In our prototype application we use a number
of Inclusion Rules to show additional information for users being interested in
details. Following code snippet inserts an additional paragraph to the project’s
textual description.

<gac:InclusionRule gac:selector="//Slice.project.description]">
<gac:Condition gac:when="$InterestedInDetails=yes"/>
<gac:what>http://www-mmt.inf.tu-dresden.de/projectdetails</gac:what>
</gac:InclusionRule>

Note that the fact whether a user is interested in details is determined by
the number of his page visits. This mechanism will be described in detail in
Section 4.4.

A Replacement Rule substitutes specific XML fragments with alternative
fragments.

Link Wrapper Rules can be effectively utilized to manipulate hyperlinks.
Their main application in the SAG is the modification of hyperlink targets en-
countered in the input XML documents. In this way users’ clicks on the gener-
ated links are fed back to the SAG and processed by its own interaction pro-
cessor module instead of just being passed back to the server of the link (see
Section 3.3). Furthermore, according to the adaptation context data the link
wrapper rules can also add additional (personalized) request parameters to hy-
perlinks.

Following Link Wrapper Rule modifies all hyperlink targets to be redirected
to a specific SAG component (when more SAGs are used). Moreover, it also adds
a new parameter representing the name of the current user to them. Note that
the original link target is automatically attached to the new URL in the form of
an additional parameter called oldURL.

<gac:LinkWrapperRule gac:selector="//A">
<gac:Condition gac:when="($visuallyimpaired==yes)"/>
<gac:toURL>http://my-sag.org</gac:toURL>
<gac:param name="UID">$UserName</gac:param>
</gac:LinkWrapperRule>

As an example, when applied to the specific user with the ID called myUID
and the original URL http://myoldurl.org, the above rule creates following
link target:

http://my-sag.org?UID=myUID&oldURL=http://myoldurl.org

Note that Link Wrapper Rules can not only be applied to hyperlink targets
but to arbitrary URLs, e.g. also to the action attributes of Web forms. The way
how the SAG processes such requests will be described in detail in Section 3.3.

Whereas the rules mentioned above address single content units, there are
also rules adapting sets of content units, such as all child elements or all variants
of a specific content unit. A Select Rule selects one of the available content units
according to a selection function. Paginator Rules aim at dividing sets of content
units in a number of subsets, each containing a predefined number of elements.
Finally, Sorting Rules aim at ordering the selected content units according to
one of their attributes.

In our running example the list of project members shown on the project
homepage is sorted according to whether the user already saw their homepages.
Members the user was already interested in are shown in the beginning of the
list. As no condition is defined, this rule is always executed. Note that this is
an example of adaptivity. The corresponding rule for updating the adaptation
context data will be shown later.

<gac:SortingRule gac:selector="//Slice.project.members">
<gac:by>$SliceVisited [@ID]</gac:by>
<gac:order>desc</gac:order>

</gac:SortingRule>

Finally, a set of Presentation Rules have been created. In contrast to other
Adaptation Rules, they aim at transforming device-independent XML input to a
concrete Web implementation format, such as HTML, cHTML or WML. Based
on previous results of the AMACONT project [11], Presentation Rules can as-
sign so called layout managers to such groups of data containers (slices in our
example). Assumed that a desktop PC with sufficient horizontal resolution is
used, the following rule arranges the pictures of project members in a tabular
way. The cols attribute determines the number of columns in that table.

<gac:PresentationRule gac:selector="//Slice.member.picture">
<gac:Condition gac:when="($InnerSizeX>600)"/>
<gac:layout gac:type="GridLayout">
<cols>3</cols>
</gac:layout>
</gac:PresentationRule>

Update Rules aim at updating the adaptation context data, and thus keeping
track of history. They are used to change (or create new) context parameters
and are triggered whenever the GAC processes an input document. The action
performed by an Update Rule is specified in its do property. The phase prop-
erty determines whether the rule is executed before (pre) or after (post) the
transcoding process?.

Among the Adaptation Rules of our running example a Sorting Rule rule
supporting adaptivity was mentioned. It requires to keep track of the slices that
have already been visited by the user. This mechanism is supported by the
following Update Rule. The XPath expression identifies all slice instances.

4 Introduced by the AHAM reference model for adaptive hypermedia applications [15],
the phase attribute is widely used in systems supporting adaptivity.

<gac:UpdateRule selector="//Slice">
<gac:do>$SliceVisited [@ID]=true</gac:do>
<gac:phase>post</gac:phase>
</gac:UpdateRule>

3.3 Feedback and Interaction Processing

As already mentioned, the SAG extends the GAC with the functionality of an In-
teraction Processor, which is responsible for the processing of interaction requests
that come from the client side or another SAG. Depending on the embedding
of the SAG in the entire system, these requests can originate from user interac-
tions (such as following links or filling out forms) or from requests generated by
other SAGs (see Section 3.1). With this interaction processing the component
provides mechanisms for full application-user interaction, including dynamics in
the adaptation.

The way the SAG processes requests is described in its configuration by
means of so called Request Processing Rules. Parametrized by the received re-
quest parameters as well as the current state of the adaptation context data, they
unequivocally define which actions have to be performed. Firstly, it is possible
to dynamically update the adaptation context data according to new informa-
tion received from the client side. Secondly, the SAG can also decide whether
the request has to be served by itself or redirected (possibly in a modified way)
to a different server component, such as another Web application server or the
preceding SAG in the SAG pipeline (see Section 3.1).

In our running example users can directly influence the look-and-feel of the
Web application by choosing different layout types from a select-list. The cur-
rently chosen layout is sent back to the SAG by means of a Web form. Following
Request Processing Rule (triggered by the client request) changes the layout
preference attribute of the user in the adaptation context data. Note that re-
quest parameters are denoted in the form $regparam|z].

<sag:RequestProcessingRule>
<sag:Condition gac:when="$reqparam[layout]!=’’"/>
<sag:do>$LayoutPref=$reqparam[layout]</sag:do>
</sag:RequestProcessingRule>

After executing possible update rules, the interaction processor of the SAG
decides if the request has to be redirected. As in our concrete example the change
of the user’s layout preferences affects only the current SAG responsible for the
presentation layer, it can re-trigger the data transformation process according
to the new context data.

<sag:RequestProcessingRule>
<sag:Condition gac:when="$reqparam[layout]!=’’>"/>
<sag:do>retrigger</sag:do>
</sag:RequestProcessingRule>

Still, there are also cases when the SAG can not process (parts of) a request
on its own. In our running example project members are allowed to add new
publications to their Web pages by filling out and submitting a corresponding
Web form. Since this data has to be written back to the original content store, it
has to be handed back through all SAGs to the server that controls the content
storage. Therefore, the following Request Processing Rule creates a new request
consisting of a new URL prefix (addressing the preceding SAG) and a list of
parameters describing the new publication.

<sag:RequestProcessingRule>
<sag:Condition gac:when="$reqparam[pubname]!=>7"/>
<sag:redirect>http://my-sag2.org</gac:redirect>
<sag:param name="pubname">$reqparam[pubname]</sag:param>
<sag:param name="pubyear">$reqparam[pubyear]</sag:param>

</sag:RequestProcessingRule>

The rules executed by the SAG are parameterized by the adaptation context
data containing up-to-date information on both the user and his browser de-
vice (client). Note that already the rules from the GAC were parameterized in
this way, but for the request processing rules the role of the adaptation context
data is even more interesting: in this data the interaction processor can store its
temporal state information. The modeling of user and device in the application
context data relies on CC/PP, an RDF grammar for describing device capa-
bilities and user preferences [16]. In the style of the WAP User Agent Profile
(UAProf) [17], a CC/PP-vocabulary for describing WAP devices in a standard-
ized way, we have developed specific extensions to describe a large diversity of
devices and user preferences.

4 Implementation

The SAG was realized with the aid of the AMACONT project’s modular docu-
ment generation architecture [5]. As illustrated in Figure 4, it consists of a con-
figurable series of data transformation modules (GACs) and their corresponding
interaction processors. Sent to this pipeline, XML documents are adjusted to the
current user and device context in a stepwise way. Furthermore, the interactions
gathered from the client side are processed (or redirected) by the coresponding
context modeling modules. The document generator was realized based on the
Cocoon publication framework.

4.1 Data Transformations

Within the SAG, the GAC was implemented as a custom Cocoon transformer in
Java. It communicates with the adaptation context data repository and performs
the appropriate data transformations on the DOM view of its input documents.
In the current implementation the repository was realized based on the open

/ SAG

\

SAG NEE
Interaction Interaction ::gﬂ'es. Interaction request
Processor [*]_| Processor Processor
Ve e |
ACD ACD a
£
ML GAC GAC Adapted
N Transform Transform Transform Web
input Doc

Fig.4. AMACONT Document Generation Pipeline.

source RDF database Sesame. The GAC utilizes SeRQL (Sesame RDF Query
language) for retrieving or updating this data. In order to effectively realize
Adaptation Rules and Update Rules, a Java class was implemented for each rule
type introduced in Section 3.2. Parameterized by rule-specific properties, they
are optimized for performing the corresponding operations on the DOM-based
representation of the input documents.

4.2 Realizing Presentation Adaptation

As already mentioned, Presentation Rules rules differ from other Adaptation
Rules. By making use of AMACONT’s layout manager concept they aim at
transforming the input content to concrete output formats, such as XHTML,
cHTML or WML. This transformation is performed by means of format-specific
stylesheets written in XSLT. A detailed description of presentation layer trans-
formations was given in [11].

4.3 Feedback Processing

As mentioned above, hyperlinks and Web forms included in the generated Web
presentation can be redirected to the SAGs by means of Link Wrapper Rules.
Whenever such a hyperlink or form is activated, the generation architecture
of AMACONT [18] also allows for automatically gathering and submitting up-
to-date information about users’ device capabilities (e.g. browser type, current
window size etc.) to the server side. Thus, all information describing the user’s
dynamic browsing behavior and client-side usage context is transferred to the
corresponding SAG via HT'TP requests.

The interaction processor module of the SAG was also implemented in Java®.
According to the corresponding rule configuration, it firstly performs updates on

® By defining clearly defined interfaces, the modular architecture of AMACONT allows
for utilizing arbitrary context modeling components for reacting on client requests
and user interactions on the server side.

the adaptation context data by executing queries to the context repository. Then,
it decides whether to re-trigger the data transformation process or redirect the
(optionally modified) request to the preceding SAG.

4.4 Running Example Scenario

For illustrating the main functions provided by the SAG, we implemented a
prototype application realizing the running example described in this paper [13].
As shown in Figure 4, it is composed of three SAGs realizing the content, the
navigation and the presentation layers of the application. Note that this three-
part architecture is only specific for the running example, the modularity of the
AMACONT pipeline allows for arbitrary configurations.

Figure 5 shows two versions of the generated project homepage, one for a
desktop PC and another one for a PDA. As dictated by our Presentation Rule,
the limited horizontal resolution of the PDA does not allow to arrange the project
members’ photos in a tabular way.

3 Slice.technique. E =10l

Datei Bearboten dnsicht F:

Qe ~ () - [¥] (@] 0| s s) |
adregse [&] hetp inf s cresd -~ | [wechseinzu | Lnks >
Hera meets AMACONT!
X .5'_' Internet Explo § &7 o 1:56 °

Choose your presentation style: [Syle1 »

hittp:/f141.76.61.142:8081 /cocoon - | @

Stle 2
This is & short textual description of dS¥123_| that is based on a Hera meets AMACONT!
cooperation between the Techrische Universitaet Dresden and the Welcame to our project that is based
Technische Universiteit Eindhoven. Below you can see our project on a cooperation betwesn the
members. Click on their pictures to leam more about them Techrische Universitast Dresden and

the Technische Universiteit Eindhowven.
Eelow you can see our project
members, Click on their pictures to
learn more about thern,

"‘"ﬁ‘
T
f\-/‘
J ‘z:r s-'
L % ¥4

Adaptation on this site is powered by GAC!

@ T e et 4

Fig. 5. Generated Presentation.

When a user selects his preferred presentation style from the select list shown
on the project homepage, this information is submitted to the third SAG re-
sponsible for the presentation layer. As this request does not affect the other
layers (see the first two Request Processing Rules described in Section 3.3), it
can be served by that SAG on its own. First, it reconfigures itself by updating
the adaptation context data with the new information describing the user’s lay-

out preferences. Then, according to the update context, it retriggers the data
generation process (see the retrigger arrow in Figure 4).

Clicking on a project member’s photo one can navigate to his personal home-
page. During page generation the Update Rule defined in Section 3.2 is executed,
indicating that the appropriate page (slice) was visited. Whenever a project
member is viewing his own homepage, he can also add new publications by fill-
ing out a Web form. As this request contains a parameter called $pubname, it
can not be handled by the last SAG and is therefore fed back to the first SAG
realizing the content layer in form of a redirected request (see Figure 4). Finally,
according to our running example’s Sorting Rule, the list of project members is
dynamically reordered when navigating back to the project homepage.

In order to demonstrate self-configuration, an adaptation mechanism based
on the observation of users’ pages visits throughout several sessions was im-
plemented. If the number of a user’s page requests (slice requests) exceeds the
average page request rate by a predefined percentage, the SAG automatically
classifies him as “interested” by setting the corresponding adaptation context
data parameter ($InterestedInDetails) to true. As this change activates the
Inclusion Rules aiming at showing additional information (see Section 3.2), the
SAG automatically reconfigures its data transformation (adaptation) behavior.
Thus, according to the users’ long-term browsing behavior (groups of) rules can
be added to (or removed from) the data transformation process.

5 Conclusion and Future Work

The growing need for device independence and personalization forces WIS de-
signers to support different kinds of adaptation. Another requirement towards
such adaptive WISs is self-management, i.e. the ability to dynamically adjust
themselves to a constantly changing environment. For that purpose this paper
introduced the Self-Adapting GAC (SAG), a generic software component for
adaptive data transformations with the ability of self-configuration. For its con-
figuration an RDF-based rule language providing rules for content adaptation
and self-configuration was introduced. The SAG’s implementation was described
in detail and a prototype application illustrating its main functions was devel-
oped.

Ongoing work concentrates on providing a more intuitive interface for devel-
opers aiming at configuring the SAG. This comprises both visual configuration
tools as well as support for more high-level objects on top of XML constructs.
Another task is the SAG’s extension towards communication with heterogeneous
data sources as well as multiple applications. Furthermore, we also to aim at
using the developed RDF-based rule language in a broader context, especially
within WIS specification frameworks.

References

[1] Isakowitz, T., Bieber, M., Vitali, F.: Web information systems - introduction.
Communications of the ACM 41 (1998) 78-80

2]

3]

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

Hori, M., Ono, K., Koyanagi, T., Abe, M.: Annotation by transformation for
the automatic generation of content customization metadata. In: International
Conference on Pervasive Computing, Pervasive 2002, Zurich, Switzerland. (2002)
Passos, L.T., de Oliveira Valente, M.T.: Personalizing web sites for mobile devices
using a graphical user interface. In: ICWE. (2004) 220-224

Fiala, Z., Houben, G.J.: A generic trancoding tool for making web applications
adaptive. In: The 17th Conference on Advanced Information Systems Engineering
(CAIiSE’05), Porto, Portugal. (2005)

Fiala, Z., Hinz, M., Meiner, K., Wehner, F.: A component-based approach for
adaptive dynamic web documents. Journal of Web Engineering, Rinton Press 2
(2003) 058-073

Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering, Rinton Press 2 (2003)
003-026

Rossi, G., Schwabe, D., Guimaraes, R.: Designing personalized web applications.
In: WWW10, The Tenth International Conference on the World Wide Web, Hong
Kong. (2001)

Lima, F., Schwabe, D.: Application modeling for the semantic web. In: First
Latin American Web Congress (LA-WEB’03), IEEE (2003) 93-103

Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebML): a modeling
language for designing web sites. In: 9th International Conference on the World
Wide Web (WWWY9), Amsterdam. (2000)

Troyer, O.D., Casteleyn, S.: Designing localized web sites. In: WISE. (2004)
547-558

Fiala, Z., Frasincar, F., Hinz, M., Houben, G.J., Barna, P., Meissner, K.: Engi-
neering the presentation layer of adaptable web information systems. In: Fourth
International Conference on Web Engineering (ICWE2004), Munich. (2004)
Frasincar, F., Houben, G.J., Vdovjak, R.: Specification framework for engineering
adaptive web applications. In: WWW 11, The Eleventh International Conference
on the World Wide Web. (2002)

Fiala, Z.: Hera meets AMACONT - SAG prototype. http://www-mmt.inf.tu-
dresden.de:8081/sag/index.html. (2005)

Brusilovsky, P.: Adaptive hypermedia. User Modeling and User Adapted Inter-
action 11 (2001) 87-110

Bra, P.D., Houben, G.J., Wu, H.: AHAM: A dexter-based reference model for
adaptive hypermedia. In: 10th ACM Conference on Hypertext and Hypermedia
(HYPERTEXT ’99), Darmstadt, Germany, ACM (1999) 147-156

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M., Tran, L.:
Composite Capability /Preference Profiles (CC/PP): Structure and Vocabularies.
W3C Working Draft. (2003)

Wireless Application Group, WAP Forum: User Agent Profile Specification.
(2001)

Hinz, M., Fiala, Z.: Amacont: A system architecture for adaptive multimedia
web applications. In: Workshop XML Technologien fur das Semantic Web (XSW
2004). (2004)

